Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 18(6): 1308-1315, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36453416

RESUMO

Recent studies have indicated that suppressing oxidative stress and ferroptosis can considerably improve the prognosis of intracerebral hemorrhage (ICH). Withaferin A (WFA), a natural compound, exhibits a positive effect on a number of neurological diseases. However, the effects of WFA on oxidative stress and ferroptosis-mediated signaling pathways to ICH remain unknown. In this study, we investigated the neuroprotective effects and underlying mechanism for WFA in the regulation of ICH-induced oxidative stress and ferroptosis. We established a mouse model of ICH by injection of autologous tail artery blood into the caudate nucleus and an in vitro cell model of hemin-induced ICH. WFA was injected intracerebroventricularly at 0.1, 1 or 5 µg/kg once daily for 7 days, starting immediately after ICH operation. WFA markedly reduced brain tissue injury and iron deposition and improved neurological function in a dose-dependent manner 7 days after cerebral hemorrhage. Through in vitro experiments, cell viability test showed that WFA protected SH-SY5Y neuronal cells against hemin-induced cell injury. Enzyme-linked immunosorbent assays in vitro and in vivo showed that WFA markedly decreased the level of malondialdehyde, an oxidative stress marker, and increased the activities of anti-oxidative stress markers superoxide dismutase and glutathione peroxidase after ICH. Western blot assay, quantitative polymerase chain reaction and immunofluorescence results demonstrated that WFA activated the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling axis, promoted translocation of Nrf2 from the cytoplasm to nucleus, and increased HO-1 expression. Silencing Nrf2 with siRNA completely reversed HO-1 expression, oxidative stress and protective effects of WFA. Furthermore, WFA reduced hemin-induced ferroptosis. However, after treatment with an HO-1 inhibitor, the neuroprotective effects of WFA against hemin-induced ferroptosis were weakened. MTT test results showed that WFA combined with ferrostatin-1 reduced hemin-induced SH-SY5Y neuronal cell injury. Our findings reveal that WFA treatment alleviated ICH injury-induced ferroptosis and oxidative stress through activating the Nrf2/HO-1 pathway, which may highlight a potential role of WFA for the treatment of ICH.

2.
Acta Pharmacol Sin ; 43(11): 2807-2816, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35581293

RESUMO

Our previous study showed that H3 receptor antagonists reduced neuronal apoptosis and cerebral infarction in the acute stage after cerebral ischemia, but through an action independent of activation of histaminergic neurons. Because enhanced angiogenesis facilitates neurogenesis and neurological recovery after ischemic stroke, we herein investigated whether antagonism of H3R promoted angiogenesis after brain ischemia. Photothrombotic stroke was induced in mice. We showed that administration of H3R antagonist thioperamide (THIO, 10 mg·kg-1·d-1, i.p., from D1 after cerebral ischemia) significantly improved angiogenesis assessed on D14, and attenuated neurological defects on D28 after cerebral ischemia. Compared with wild-type mice, Hrh3-/- mice displayed more blood vessels in the ischemic boundary zone on D14, and THIO administration did not promote angiogenesis in these knockout mice. THIO-promoted angiogenesis in mice was reversed by i.c.v. injection of H3R agonist immepip, but not by H1 and H2 receptor antagonists, histidine decarboxylase inhibitor α-fluoromethylhistidine, or histidine decarboxylase gene knockout (HDC-/-), suggesting that THIO-promoted angiogenesis was independent of activation of histaminergic neurons. In vascular endothelial cells (bEnd.3), THIO (10-9-10-7 M) dose-dependently facilitated cell migration and tube formation after oxygen glucose deprivation (OGD), and H3R knockdown caused similar effects. We further revealed that H3R antagonism reduced the interaction between H3R and Annexin A2, while knockdown of Annexin A2 abrogated THIO-promoted angiogenesis in bEnd.3 cells after OGD. Annexin A2-overexpressing mice displayed more blood vessels in the ischemic boundary zone, which was reversed by i.c.v. injection of immepip. In conclusion, this study demonstrates that H3R antagonism promotes angiogenesis after cerebral ischemia, which is independent of activation of histaminergic neurons, but related to the H3R on vascular endothelial cells and its interaction with Annexin A2. Thus, H3R antagonists might be promising drug candidates to improve angiogenesis and neurological recovery after ischemic stroke.


Assuntos
Anexina A2 , Isquemia Encefálica , AVC Isquêmico , Receptores Histamínicos H3 , Animais , Camundongos , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Receptores Histamínicos H3/metabolismo , Histamina , Células Endoteliais/metabolismo , Isquemia Encefálica/tratamento farmacológico , Camundongos Knockout , Infarto Cerebral
3.
Sci Rep ; 5: 15356, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26481857

RESUMO

The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn't been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Histidina/metabolismo , Neuroproteção , Animais , Astrócitos/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Movimento Celular/efeitos dos fármacos , Cicatriz/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Histidina/farmacologia , Masculino , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Receptores Histamínicos H2/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Sci Rep ; 5: 12079, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26174710

RESUMO

Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0-3), but not the late stage after rUCCAO (day 4-32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD.


Assuntos
Transtornos Cognitivos/prevenção & controle , Minociclina/farmacologia , Fármacos Neuroprotetores/farmacologia , Substância Branca/efeitos dos fármacos , Animais , Lesões das Artérias Carótidas/complicações , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Transtornos Cognitivos/etiologia , Demência Vascular/metabolismo , Demência Vascular/patologia , Modelos Animais de Doenças , Fase G2 , Oxirredutases Intramoleculares/farmacologia , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microscopia Eletrônica , Oligodendroglia/citologia , Ratos , Ratos Sprague-Dawley , Fase S , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Substância Branca/fisiologia
5.
CNS Neurosci Ther ; 21(5): 454-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25620315

RESUMO

AIM: This study investigated whether histamine could play a protective role in pathophysiological response of spinal cord injury (SCI) and regulate the glial scar formation. METHODS: Functional assessment and histological analyses were performed to investigate the effect of histamine after SCI. Histidine decarboxylase knockout (HDC(-/-)) mice were used to confirm the action of histamine. Selective antagonists for H1 and H2 receptors were utilized in vivo and in vitro to verify the functional properties of histamine on astrogliosis. RESULTS: The local administration of histamine significantly attenuated the tissue damage and glial scar formation after SCI. In particular, the astrogliosis and neurocan expression found around the lesion were significantly suppressed by histamine. Immunofluorescent staining for neurofilament showed that histamine promoted axonal growth across the glial scar. The HDC(-/-) mice, lacking in endogenous histamine, showed lower behavior score, increased lesion size and astrogliosis, as compared with the wild types. The effect of histamine on locomotor recovery and reactive astrogliosis is reversed by H1 receptor antagonist but not H2 receptor antagonist. CONCLUSIONS: Our results indicate that histamine significantly improved the chronic locomotor recovery via attenuating astrogliosis after SCI by stimulating histamine H1 receptor. This study highlights a therapeutic potential of histamine and its related drugs for SCI.


Assuntos
Cicatriz/prevenção & controle , Histamina/farmacologia , Locomoção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/fisiologia , Cicatriz/patologia , Cicatriz/fisiopatologia , Modelos Animais de Doenças , Feminino , Agonistas dos Receptores Histamínicos/farmacologia , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Locomoção/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Sprague-Dawley , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
6.
Clin Exp Pharmacol Physiol ; 41(12): 976-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224648

RESUMO

Our previous studies showed that protein phosphatase 1γ (PP1γ) exacerbates cardiomyocyte apoptosis through promotion of Ca(2+)/calmodulin-dependent protein kinase δ (CaMKIIδ) splicing. Here we determine the role of PP1γ in abdominal aorta constriction-induced hypertrophy and remodelling in rat hearts. Systolic blood pressure and echocardiographic measurements were used to evaluate the model of cardiac hypertrophy. Sirius red staining and invasive haemodynamic/cardiac index measurements were used to evaluate the effects of PP1γ or inhibitor 1 of PP1 transfection. Western blot, reverse transcription polymerase chain reaction and co-immunoprecipitation were applied to investigate the molecular mechanisms. Transfection of PP1γ increased the value of the heart mass index, left ventricular mass index and cardiac fibrosis, and simultaneously decreased the value of maximal left ventricular pressure increase and decline rate, ejection fraction, fractional shortening, and left ventricular end-diastolic pressure, as well as left ventricular systolic pressure. Transfection of inhibitor 1 of PP1, however, showed opposite effects on the aforementioned indexes. Overexpression of PP1γ potentiated CaMKIIδC production and decreased CaMKIIδB production in the hypertrophic heart. In contrast, inhibition of PP1γ re-balanced the CaMKIIδ splicing. Furthermore, CaMKII activity was found to be augmented or attenuated by PP1γ overexpression or inhibition, respectively. Further mechanistic studies showed that abdominal aorta constriction stress specifically increased the association of alternative splicing factor with PP1γ, but not with PP1ß. Overexpression of PP1γ, but not inhibitor 1 of PP1, further potentiated this association. These results suggest that PP1γ alters the cardiac hypertrophy and remodelling likely through promotion of the alternative splicing factor-mediated splicing of CaMKIIδ.


Assuntos
Processamento Alternativo/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Animais , Apoptose/fisiologia , Cardiomegalia/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...